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This is a reformulation of the first chapter of Landau’s Grundlagen der
Analysis in the Controlled Natural Language of Naproche. Talk about sets
is still avoided. One consequence of this is that Axiom 5 (the induction
axiom) cannot be formulated; instead we use an induction proof method.

Axiom 3: For every z, z’ # 1.
Axiom 4: If 2’ = ¢/, then z = y.

Theorem 1: If z # y then o’ # y'.
Proof:
Assume that z # y and 2’ = 9. Then by axiom 4, x = y. Qed.

Theorem 2: For all z a2’ # .

Proof:

By axiom 3, 1’ # 1. Suppose 2’ # x. Then by theorem 1, (z’)" # 2’. Thus by induc-
tion, for all z 2’ # x. Qed.

Theorem 3: If z # 1 then there is a u such that z = v’.

Proof:

If 1 # 1 then there is a u such that 1 = /.

Assume z’ # 1. If w = x then 2’ = u'. So there is a u such that ' = u’.
Thus by induction, if 2 # 1 then there is a u such that x = u’. Qed.

Definition 1:

Define + recursively:
z+1=2a.

z+y =(+y).

Theorem 5: For all z, y, z, (x +y)+ z =2+ (y + 2).
Proof:

Fix z, y.

(z+y)+l=(+y) =c+y =x+(y+1).



Assume that (z4+y)+2z = 2+ (y+2). Then (z4y)+2' = (z+y)+2) = (z+(y+2)) =
z+(y+z)=x+Wy+7) So(z+y)+2z=z+(@y+2).
Thus by induction, for all z, (z +y) +z =z + (y + 2). Qed.

Lemma 4a: For all y, 1 +y =1'.

Proof:

By definition 1, 1 +1=1'.

Suppose 1+ y = ¢'. Then by definition 1, 1+ ¢ = (1+y). So1+y = (¢v').
Thus by induction, for all y 1 +y = ¢’. Qed.

Lemma 4b: For all z,y, ' +y = (x + y)’.

Proof:

Fix . Then 2’ + 1 = (2')’ = (x + 1)’ by definition 1.

Suppose 2'+y = (z+y)’. Then by definition 1 2’4y’ = (2’'+y) = ((z+y)") = (z'+vy)".
Thus by induction, for all y ' +y = (z + y)’. Qed.

Theorem 6: For all y, z, x +y =y + .

Proof:

Fixy. Theny+1=1¢'. Bylemmada, 1+y=1v¢". Sol+y=y+1.

Assume that * + y = y+ 2. Then (z 4+ y) = (y+ ) = y + 2’. By lemma 4b,
y+ry=(x+vy), ie ' +y=y+2a.

Thus by induction, for all z x +y =y + z. Qed.

Theorem 7: For all z, y, y # = + y.

Proof:

Fix . Then 1 # 2/, i.e. 1 # x + 1.

If y#x+y, theny # (z+vy),ie v #x+y.
So by induction, for all y y # = +y. Qed.

Theorem 8: If y # z, then for all x z +y # = + z.

Proof:

Assume y # 2. Then y' # 2" ie. 1+y#1+ 2.

If x +y#x+ 2z then (x +y) # (x + 2), le. &' +y#2a' +z.
So by induction, for all z x + y # x + z. Qed.

Theorem 9: Fix z, y. Then precisely one of the following cases holds:

Case 1: z =y.

Case 2: There is a u such that x =y + u.

Case 3: There is a v such that y =z + v.

Proof: Fix x, y. By theorem 7, case 1 and case 2 are inconsistent and case 1 and case
3 are inconsistent. Suppose case 2 and case 3 hold. Then x = y+u = (z +v) +u =
x4+ (w4u)=(v+u)+ 2.

Contradiction by theorem 7. Thus case 2 and case 3 are inconsistent. Thus for all x,
y, at most one of case 1, case 2 and case 3 holds.

Now fix x. Define M (y) iff case 1 or case 2 or case 3 holds.



Suppose y = 1. By theorem 3, x =1=yorx =u =1+ u =y + u. Thus M(1).
Suppose M (y). Then there are three cases:

Case 1: z =y.

Then ¢y’ =y+1=xz+1. So M(y').

Case 2: © =y + u.

Ifu=1,thenx =y +1=1', i.e. M(y).

By theorem 3, if u # 1, then u = w’ = 14w, i.e. z =y+(1+w) = (y+1)+w =y +w,
ie. M(y").

Case 3: y =z +v.

Then y' = (x +v) =x + ', i.e. M(y').

So in all cases M (y').

Thus case 1 or case 2 or case 3 holds. Qed.

Definition 2:
Define x > y iff there is a u such that x = y 4 u.

Definition 3:
Define x < y iff there is a v such that y =z + v.

Theorem 10: Let x, y be given. Then precisely one of the following cases holds:
rT=y. >y ¢ <y.
Proof: By theorem 9, definition 2 and definition 3. Qed.

Theorem 11: = > y implies y < z.
Proof: For all z,y, we have z > y iff there is a u such that x = y + u. Furthermore, we
have y < z iff there is a u such that x = y+wu. So for all z, y, z > y implies y < . Qed.

Theorem 12: x < y implies y > x.
Proof: We have x < y iff there is a v such that y = x +v. Furthermore, we have y > x
iff there is a v such that y = x +v. So < y implies y > x. Qed.

Definition 4:
Define x >y iff x >y or z = y.

Definition 5:
Define x <y iff x <y or z = y.

Theorem 13: x > y implies y < x.
Proof:
By theorem 11. Qed.

Theorem 14: z < y implies y > z.
Proof:
By theorem 12. Qed.



Theorem 15: If z < y and y < z then z < z.

Proof: Assume x < y and y < z. Then there is a v such that y = z + v. Furthermore,
there is a w such that z = y + u. Then z = (z +v) +u =2+ (v+u). So there is a w
such that z =z 4+ w. So x < z. Qed.

Theorem 16: Let x, y, z be given. If x <y and y < z or z < y and y < z then = < z.
Proof:
By theorem 15. Qed.

Theorem 17: If x <y and y < z then = < z.
Proof:
By theorem 16. Qed.

Theorem 18: For all z,y, x +y > x.
Proof: For all z,y we have x +y = = + y. Qed.

Theorem 19: Let z, y, z be given. Then x > y implies z + 2z > y + 2z, * = y implies
r+z=y+zand z < yimpliesz+ 2z <y + 2.

Proof:

Let z be given.

Ifz >y, thene =y+u,sox+z=(y+u)+z=(u+y)+z=u+y+2) = (y+2)+u,
ie.x+z>y+z.

If = y then clearly z + 2z =y + 2.

Ifx <y, theny >z, ie. y+z>x+21e x+2<y+ 2z Qed.

Theorem 20: Let x, y, z be given. Then x4+ 2z > y+ z impliesx >y, v+ 2=y + 2
implies x =y and = + z < y + z implies = < y.

Proof:

By theorem 19. Qed.

Theorem 21: If x > y and z > u then x + z > y + u.

Proof:

Assume z > y and z > u. Then by theorem 19 z + 2 >y + 2. Theny+2z=2+y >
ut+y=y+u Sox+z>y+u Qed.

Theorem 22: Let x, y, z, u be given. If x > y and z > w or x > y and z > u then
r+z>y+u.

Proof:

By theorem 19 and theorem 22. Qed.

Theorem 23: If ¢ >y and z > u then x + z > y + u.
Proof:
Trivial. Qed.

Theorem 24: For all x, we have x > 1.



Proof:
Fixz. Thenz=1lorz=u =u+1>1. Qed.

Theorem 25: y > = implies y > x + 1.
Proof:
Assume y > x. Theny =z 4+ u. u>1,ie. y >z + 1. Qed.

Theorem 26: y < x + 1 implies y < z.

Proof:

Assume for a contradiction that y < x + 1 and -y < x. Then y > x. So by theorem
25 y > x + 1. Contradiction. Qed.

Definition 6:

Define * recursively:
rxl=uw.

zxy =(x*xy)+x

Lemma 28a: For all y, 1 xy = y.

Proof:

By definition 6, 1 1 = 1.

Suppose 1%y =y. Then by definition 6, 1y’ = (1xy)+1=y+1=1".
Thus by induction, for all y 1 xy =y. Qed.

Lemma 28b: For all z,y, 2’ xy = (x xy) + y.

Proof:

Fix z. Then 2’ *1 =2’ = (z 1)’ = (z * 1) + 1 by definition 6.

Suppose &’y = (z*y)+y. Then by definition 6 2'xy’ = (z'*y)+2’ = ((vxy)+y)+2’ =
(zxy)+(y+2') = (2xy)+(2'+y) = (@xy)+(z+y) = (wry)+(@+y) = ((@xy)+2)+y' =
(x*y')+y'.

Thus by induction, for all y 2’ * y = (x xy) + y. Qed.

Theorem 29: For all z, y, v xy =y * x.

Proof:

Fix y. Now y*1 =y. By lemma 28a, 1lxy =y,soy*x1=1xy.

Now suppose x *y = y*xz. Then (zxy)+y = (y*z)+y = y=*a'. By lemma 28b,
xy=(r*xy)+ty sox xy=yxa

Thus by induction, for all z x xy =y *x . Qed.

Theorem 30: For all z, y, z, z x (y + 2) = (z x y) + (z * 2).

Proof:

Fixx,y. 2x(y+1)=zxy =(xxy)+z=(xxy)+ (z*x1).

Now suppose z * (y +2) = (z+xy)+ (x*2). Then z* (y+2') = x* (y +2)) =
(x(y+2)+o=((xy)+(@x2) +r=(rxy)+((zx2)+2) = (rxy) + (rx2).
Thus by induction, for all z x * (y + 2z) = (x x y) + (x * 2). Qed.



Theorem 31: For all z, y, z, (x xy) * z = x * (y * 2).

Proof:

Fix z, y. Then (zxy)* 1=z xy =z (y*1).

Now suppose (xxy)*z = x*(y*z). Then by theorem 30, (zxy)*z’ = ((z*y)*2z)+(z*xy) =
(@x(y*2)) +(@xy) =ax((yx2)+y) =ax({y=2).

Thus by induction, for all z (x xy) x z = x * (y x z). Qed.

Theorem 32: For all z, x > y implies x * z > y * z, x = y implies x * z = y * z and
x <y implies x % z < y * z.

Proof:

Let z be given.

Ife>y thene=y+u, ie xxz=(y+u) xz=(y*xz)+(u*xz)>y*z

If x = y, then clearly x x z = y * z.

Ifx <y,theny >x ie yxz>x*xz, ie x*xz<yx*z Qed.

Theorem 33: %z > y*z implies x >y, z*z=y*z impliesx =y and rxz <y *z
implies = < y.

Proof:

By theorem 32 and theorem 10. Qed.

Theorem 34: If x > y and z > u, then z * z > y * u.

Proof:

Suppose x > y and z > u. By theorem 32, zx2z > yxz and y*xz = 2%y > uxy = y*u,
ie. xxz>yx*xu. Qed.

Theorem 35: If x >y, 2z > wor x >y, 2 > u, then zx 2z > y x 2.
Proof:
By theorem 32 and theorem 34. Qed.

Theorem 36: If x > y and z > u, then z * z > y * u.
Proof:
By theorem 35. Qed.



